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In this paper, several dynamic systems are modelled using the time-domain "nite element
method. Galerkin's weak principle is used to model the general second order mechanical
system, and is applied to the dynamics of the simple pendulum. Problems that arise during
the approximation of the "nal momentum are also investigated. Furthermore, additional
dynamic analysis methods are suggested for hybrid co-ordinate systems that have both slew
and #exible modes. The proposed methods are based on both extended Hamilton's principle
and Galerkin's weak principle. The matrix wave equation is propagated in a space domain,
satisfying the geometric/natural boundary conditions. As a result, the #exible motion can be
obtained, and this was compatible with the applied control input. A numerical example is
used to demonstrate the e!ectiveness of the proposed modelling methods for the hybrid
co-ordinate systems. � 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Over the past few decades, much research work has been undertaken on numerical
implementation tools for dynamic analysis after Bailey's reinvestigation of Hamilton's
Principle, which is also known as Hamilton's law [1]. It is necessary to clearly describe the
boundary conditions in order to apply the temporal "nite element method to dynamic
systems. This is because dynamic system analysis always involves the initial value problems
as opposed to the various applications of the conventional space-domain "nite element
method. Generally, in terms of conditions, the values of displacement and momentum are
speci"ed at the initial stage. However, we cannot de"ne the "nal co-ordinates except in the
case of special dynamic problems. It should be noted that this "nal momentum should be
neither neglected nor approximated by temporal "nite elements. Numerous research
programs have been undertaken to deal with this constraint, the references cited represent
examples only [2}6]. A general approach to the direct formulation of this kind of problem
involves a progressive time marching technique, that performs the same role as numerical
integration. Hodges and Bless [7], and Lee and Kim [8] expanded Hamilton's weak
principle and applied it to the dynamics and optimization of mechanical systems described
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in the state-space formulation. Variation of the performance index and the temporal
"nite-element discretization of the state/costate equation produce "nite-dimensional
non-linear algebraic equations, and result in the optimal trajectory of the dynamic systems.
A systematic optimization can be directly applied to the real-time guidance of the launch
vehicle. Warner and Hodges [9] showed that either lower or higher order shape functions
can be used for time discretization; however, there exist limitations for real-time
implementation in higher order polynomials, whilst guaranteeing the improvement
accuracy. Kim and Cho [10] formulated the initial value problems using a weighted penalty
method that is compatible with the parallel computing system environment. OG z and
AdiguK zel [11] suggested an algebraic equation of motion using Hamilton's law in
combination with assumed time modes. The modelling method is well suited to a direct
optimal control strategy of general dynamic systems [12]. A new analytic approach to
Hamilton's law is suggested for the dynamic analysis of linear systems using the
fundamental time modes and linear system theories [13]. The analyses of the deterministic
dynamics are extended to accommodate the dynamic systems subject to random excitation
in a stochastic perspective [14].
Flexible space structures or articulated robot arms are subject to slew motion centered at

their axle. The system exhibits two modes: (1) a slew mode represented by the rotational
motion of the whole system, and (2) a #exible mode resulting from structural #exibility
coupled with the slew motion. An accurate and e!ective method to describe this kind of
hybrid co-ordinate system involves discretizing the structure by the conventional
(space-domain) "nite element method [15, 16]. Slew mode is coupled with the #exible mode
resulting in combined mass, sti!ness and input matrices from the point of view of the
conventional "nite element method. On the other hand, the temporal "nite element method
based on Hamilton's weak principle can be readily applied to dynamic systems that have
only time-dependent variables. However, it is complicated to analyze the dynamics of
distributed parameter systems, which are dependent on both time and space variables. To
overcome these problems, space domain was discretized using a conventional "nite element
method. The resulting matrix di!erential equation is similar to that of a second order
mechanical system. Once the system is time dependent, Hamilton's weak principle can be
applied. Another direct method is to apply the space}time "nite element method (STFEM)
that discretizes both the spatial and time domains [17}19]. These general approaches
generally produce good results, which are accepted for solving the dynamics of distributed
parameter systems. However, they are subject to a routine job and generally require
a relatively signi"cant amount of computation, which depends on the number of "nite
elements used in the space and time domains.
Flowtow and SchaK er [20] proposed the wave domain method to analyze the dynamic

behavior of structures subject to external input. This method freezes the time domain and
analyzes the structural system in the space domain. Subsequently, the wave absorbing
control strategy can be used for the frequency domain approach, by using either the Fourier
transformation [20, 21] or the Laplace transformation [22, 23] of the governing equation.
Motivated by wave propagation and absorbing control, this paper presents a numerical
realization of the spatial propagation of the hybrid co-ordinate systems using the time-
domain "nite element method. To achieve this, a closed-form matrix construction, not the
progressive time marching method, in the time domain is required. In the "rst part of this
paper, a closed-form algebraic matrix equation of motion is formulated using Galerkin's
approach with an appropriate matrix construction. Note that the proposed formulation is
still in the category of Galerkin's general approach and has a role equivalent to Hamilton's
formulation. It is shown that the appropriate matrix construction results in algebraic
equations, and consequently, the overall solution can be obtained by a simple inversion.
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Another example demonstrates that the approximation of "nal momentum gives rise to
accumulated errors in terms of the overall system response.
Although the matrix algebraic equation has a closed form, it is unsuitable for direct

application to the spatial propagation of a #exible structure, and therefore, another
time-domain analysis method is proposed in the latter part of this paper for hybrid
co-ordinate systems that have additional spatial dimension, subject to the rest-to-rest
maneuver. The dynamic analysis of the slewing hybrid co-ordinate systems is performed for
the case that the initial and "nal momenta are speci"ed so that the constructed state-space
equation preserves the same eigensystem characteristics as those in the frequency-domain
analysis of the previous works [20]. Both the extended Hamilton's principle and Galerkin's
weak principle are used to formulate the system. A Spatial Propagation equation based on
these formulations enables a #exible mode solution, which extends the well-identi"ed
method for cantilevered structures [24]. As a result of time discretization, the #exible mode
equation is reduced to a fourth order matrix di!erential equation, which is a function of the
slew motion, whereas slew motion is converted into an algebraic matrix equation that
incorporates the e!ects of the #exible mode and control input. The hybrid co-ordinate
system used in this study is composed of four #exible appendages attached to a central hub,
which rotates around the vertical axis.
This paper is organized as follows. First, the dynamic modelling of a general

non-conservative mechanical system is presented using the time-domain "nite element
method. The modelling methods are validated by a double integrator problem, and the
e!ect of the approximation of the "nal momentum is also investigated. Dynamic analyses of
the hybrid co-ordinate systems are presented using both the extended Hamilton's principle
and Galerkin's weak principle. Finally, a numerical example is provided to compare the
e!ectiveness of the proposed methods.

2. TIME-DOMAIN FEM APPLIED TO THE DYNAMIC SYSTEMS

In this section, the dynamic system is modelled using Galerkin's weak principle and it is
shown that the modelling method is equivalent to that obtained using Hamilton's weak
principle. Several numerical examples are used to investigate the modelling method,
namely: dynamics as a time sequence, open- and closed-loop system dynamics. The e!ect of
the "nal momentum approximation on the numerical result is also investigated. Galerkin's
weak principle starts from a dynamic equation of motion while Hamilton's weak principle
starts from the energy relationships of a dynamic system. It is also noted that the variation
in Hamilton's weak principle has the same role as the weighting function in Galerkin's weak
principle.

2.1. FORMULATION

The dynamic equation of motion for the second order non-conservative mechanical
system can be expressed as follows:

mvK (t)#cvR (t)#kv(t)"u(t), (1)

wherem, c, k, v (t) and u(t) denote the mass, damping, sti!ness coe$cients, displacement, and
external excitation input, respectively, and ( ) ) denotes di!erentiation with respect to time.
The initial conditions are v

�
"k��u

�
, p

�
"mvR

�
, where p

�
denotes the initial momentum of

the system. Mathematical manipulations of equation (1) yield the weak "nite element
formulation as follows:

!�
��

��

mvR (t)�R (t) dt # �
��

��

cvR (t)�(t) dt#�
��

��

kv(t)�(t) dt"�
��

��

u(t)�(t) dt!p(t)�(t)���
��
, (2)
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where �(t) is an unknown weight function and p(t)"mvR (t) is the momentum of the system.
The variables v(t) and �(t) can be discretized as follows using the time-based shape functions.

v(t)"�
�

�
�
(t)v

�
, �(t)"�

�

�
�
(t)�

�
, (3)

where the weight function is chosen in the basis functions that are identical to the trial
function [25]. In equation (2), the conditions for the state variables and the weighting
function are attenuated so that their "rst derivatives are continuous. This enables us to use
the "rst or higher order polynomials as shape functions; for example, the Lagrange
polynomials are suitable as shape functions because their "rst derivatives are continuous.
The sum of shape functions at any instance is unity and the sum of their derivatives becomes
zero, which is often used to con"rm the adopted shape functions. Using equations (2) and (3)
the "nite element formulation of the dynamic system can be obtained as follows:

!M�#C�#K�"F, (4)
where
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(t) dt,

where p
�
is added to the "rst row of F in order to re#ect the initial momentum, and the "nal

momentum p
�
is subtracted from the last row. Since p

�
is unknown, it is augmented in the

state vector, and therefore, the overall number of states is (N#2) whereN is the number of
"nite elements in time multiplied by the order of the adopted shape functions.
The displacement can be obtained from equation (4) as

�"(!M#C#K)��F. (5)

Note that the term inside the parentheses is usually invertible. The system order is (N#2),
while both matrices M and C have 1-degeneracy, which is caused by the augmentation.
However, the matrix K has full rank making the overall matrix also have full rank. The
condition of the matrixK becomes worse as the number of "nite elements in time increases.
However, the condition number of (!M#C#K) is moderate and almost independent of
the number of "nite elements. Therefore, the combined matrices are appropriately
conditioned and the overall matrix is invertible.

2.2. HAMILTON'S WEAK PRINCIPLE

Another formulation using Hamilton's weak principle can be obtained from the variation
of the Lagrangian on the basis of the global energy relationship of the conservative/
non-conservativemechanical systems [6]. The following variational equations were derived



MODELLING OF VIBRATING SYSTEMS 507
using the D'Alembert and virtual work principle as a function of generalized co-ordinate,
velocity, and time:

!�
��

��

��¸(q, qR , t)#�q�Q�dt"�q�p���
��
, (6)

where q, p"�¸/�qR , ¸, and Q denote a generalized co-ordinate, a generalized momentum,
the Lagrangian of the system, and non-conservative force, respectively. Generalized
co-ordinates and velocity are discretized for each "nite time interval by

q(t)"�
�

�
�
(t)q

�
, qR (t)"�

�

�Q
�
(t)q

�
, (7)

A total of n#1 algebraic equations are derived for the nth order shape function from
equations (6) and (7), from which the subsequent displacement and momentum for each
time step are obtained. The displacement and velocity of the next time step can be obtained
recursively using the "nal displacement and momentum of the previous time "nite element.

2.3. NUMERICAL EXAMPLES

2.3.1. Dynamic analysis of the open-loop and closed-loop systems

In order to validate the time domain "nite element method using Galerkin's weak
principle, the undamped simple pendulum shown in Figure 1 was investigated. A linearized
equation of motion around the equilibrium state can be described as follows:

v( (t)#
g

l
v(t)"u(t), (8)
Figure 1. A simple pendulum.



0 0.5 1.0 1.5

−10

−5

0

5

10

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

D
ef

le
ct

io
n 

A
ng

le
 (

de
g)

−10

−5

0

5

10

D
ef

le
ct

io
n 

A
ng

le
 (

de
g)

Time (sec) Time (sec)

(a) (b)

Figure 2. Free response of a simple pendulum: (a) simulation time of 2 s; (b) simulation time of 4 s.
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where g is the gravitational constant and the length of pendulum is l"0)5m. In this
example, v

�
"10 3 and p

�
"0 are chosen as the initial conditions. Figure 2 shows the

open-loop response of the angular displacement when there is no external input with a time
interval of 0)1 s. Since the damping factor is not considered in this example, the
displacement history shows a periodic motion with the period of about 1)4 s. Figure 2(a) and
2(b) shows the results for di!erent "nal times, and therefore it is con"rmed that the
modelling method is not dependent on a special time or state of the system. This method is
unconditionally stable and the existence of an inverse matrix produces accurate results even
for a large time interval. The meaning of &&unconditionally stable'' in this paper did not
originate from a direct derivation from the general time integration scheme. Spectral radius
of the method is not directly obtained from the "nite di!erence relationship of the explicit or
implicit integration. In time-domain "nite element method, the e!ect of stability exists
implicitly in the matrices M and K. Therefore, the time-marching relationship is only
implied in the process of generation of the element matrices. Note that the momentum can
be obtained at each time step in Hamilton's weak principle, while it must be obtained via
post-processing work after the displacement history is determined in Galerkin's weak
principle.
Closed-loop system dynamics was also investigated for the mechanical system with the

following state feedback:

u(t)"!k
�
v(t)!k

�
vR (t). (9)

Substituting equation (9) into equation (8) yields

v( (t)#k
�
vR (t)#�

g

l
#k

��v(t)"0. (10)

Therefore, the response of the closed-loop system can be obtained using a similar
procedure. Figure 3 shows the time history of the closed-loop system for the various
feedback gains with the same initial conditions. It is evident that the velocity feedback
has a dominant role in the regulation while the displacement feedback increases the
bandwidth.

2.3.2. Approximation of the ,nal momentum

Special attention should be given to the approximation of "nal momentum, because even
a normal approximation of the "nal momentum can lead to the wrong results. In this
section, it is shown that the momentum approximation may produce inconsistent results.
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Let us assume that the "nal momentum can be approximated in the time domain as
follows:

p
�
"m�

�

�Q
�
(t
�
)v

�
. (11)

Substituting equation (11) into equation (2) makes the "nal momentummove to the left side
of equation (2) and locate the last row of the matrixM, thus reducing the number of states.
For example, taking a second order Lagrange polynomial as a shape function and using
only one temporal "nite element, the "nal momentum can be expressed for a unit mass as
follows:

p
�

"

1

�t
[1 !4 3] �

v
�
v
�
v
�
� (12)

or

p
�

"

1

�t �!1
9

2
!9

11

2 � �
v
�
v
�
v
�
v
�
� (13)

when a third order Lagrange polynomial is used.
As shown in Figure 4, results using equations (12) and (4) mislead the overall trajectory.

Note from Fig. 4(b) that the result is not dependent on the order of the shape function. The
approximated formulation is subjected to the inversion process of equation (5) and the small
error in the "rst "nite element is accumulated as it proceeds, leading to the unexpected
results.
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Figure 4. Free response of a simple pendulum: *: "nal momentum not approximated; **: "nal momentum
approximated; (a) Quadratic polynomial; (b) cubic polynomial: � time domain FEM*; * time domain FEM**;
** numerical simulation.

510 J. SUK AND Y. KIM
3. DYNAMIC ANALYSIS OF THE HYBRID CO-ORDINATE SYSTEMS

3.1. EXTENDED HAMILTON'S PRINCIPLE

In the previous section, the time domain "nite element method incorporating Galerkin's
weak principle was introduced to analyze a general second order mechanical system, and
compared with Hamilton's weak principle, and was demonstrated for cases involving
simple mechanical systems. In the following sections, dynamic modelling of hybrid
co-ordinate systems is investigated in the time domain. The Hub-appendage system shown
in Figure 5 is considered, and #exible appendages are subjected to elastic deformation in the
hybrid co-ordinate systems. A torque generator is mounted on the central hub and
a distributed force actuator is attached to the appendage to control the #exible motion. It is



Figure 5. Hybrid co-ordinate system: (a) integrated structure-control signal #ow diagram; (b) co-ordinate
system (top view).
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assumed that the "nal momentum becomes negligible, which is the general case for
a controlled rest-to-rest maneuver.

3.1.1. ¹ime discretization

In this section, general co-ordinates are discretized based on the extended Hamilton's
principle. The slew mode can be treated like the #exible co-ordinates, and therefore, it can
be entered inside the integration. The total kinetic and potential energy of the hybrid
co-ordinate system can be expressed as follows [26]:

¹"

1

2
J
�
�Q �#4 )

1

2�
�

�

�(x)[wR (x, t)#x�Q (t)]�dx, (14)

P"4 )
1

2�
	

�

EI�
��w(x, t)

�x� �
�
dx, (15)

where x is a spatial variable measured from the center of the hub along the undeformed
appendage axis, �(t), w(x, t), J

�
, r, and l are the slew angle, the transverse de#ection of the

appendage measured from the x-axis, the hub moment of inertia, the radius of hub, and the
distance between the center of hub and the tip of appendage respectively. The virtual work
imposed by the hub-mounted exciter and the distributed force actuator is given by

�="u
�
(t)��(t)#4 �

	

�

f (x, t)�w(x, t) dx. (16)
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To apply the extended Hamilton's principle to the hub-appendage model, let us take the
variation on the integrand and integrate the resulting equation over "nite time, as follows:

�
��

��
�J��Q (t)��Q (t)#u

�
(t)��(t)#4�

	

�

�[w	 (x, t)#x�Q (t)] [�wR (x, t)#x��Q (t)] dx

!4�
	

�

EIw

(x, t)�w

(x, t) dx#4�
	

�

f (x, t)�w(x, t) dx�dt"0.

(17)

In the above equation, all terms are included in the time integration; however, the slew
mode remains outside the spatial integration. All the modes should be included in the
spatial integration in order to deduce the equation from equation (17). Therefore, the slew
mode and the hub torque-related terms are included in the spatial integration with some
manipulation as follows:

�
��

��
�

	

�
�

3x�

l�!r�
J
�
�Q (t)��Q (t)#

3x�

l�!r�
u
�
(t)��(t)#4�[w	 (x, t)#x�Q (t)] [�wR (x, t)#x��Q (t)]

!4EIw

(x, t)�w

 (x, t)#4f (x, t)�w (x, t)�dxdt"0. (18)

Now, a new variable is de"ned such that the slewmode can be propagated into the spatial
domain:

�(x, t)"�(t)x. (19)

Using equation (19), equation (18) can be rewritten as

�
	

�
�

��

��
��4�#

3J
�

l�!r���Q (x, t)��Q (x, t)#4��Q (x, t)�wR (x, t)#4�wR (x, t)��Q (x, t)#4�wR (x, t)�wR (x, t)

!4EIw

(x, t)�w

(x, t)#
3x

l�!r�
u
�
(t)��(x, t)#4f (x, t)�w(x, t)�dtdx"0. (20)

The slew and #exible modes are discretized as a general consequence of the "nite element
discretization in time as follows:

�(x, t)"�
�

�
�
(t)�

�
(x), w(x, t)"�

�

�
�
(t)w

�
(x). (21)

Note that the basis functions, �
�
(t) and �

�
(t), for each co-ordinate may have di!erent

orders. However, this would result in either an under-determined or an over-determined
algebraic equation so that another assumption and/or approximation should be provided.
Therefore, the same order of shape functions was used, i.e., �

�
(t)"�

�
(t).

In this study, it is assumed that the distributed force on the appendage is a function of
independent time and space variables as follows:

f (x, t)"u


(t) f



(x). (22)

An ideally distributed force actuator might be considered to have an arbitrary control
sequence on any position of the appendage. However, this would be unrealistic because an
in"nite-dimensional actuator is required. On the other hand, the above assumption of
equation (22) is valid in the sense that we can tailor the force distribution appropriately
along the appendage using the area of the attached actuator. Once the force distribution is
determined, the actuator can be activated by either open-loop control or state feedback
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control. Under this assumption, the complete matrix of ordinary di!erential equations is
obtained as follows:

!M
�
X#K

�
X����"F

��
f
�
(x)

f


(x)�, (23)

where,

M
�

" �
M�� 4M���
4M� 4M

��
�, K

�
"�

0 0T

0 4K

�, F

�
"�

F
�

0

0 4F


�, X"�

�(x)

w(x)�.
Note that the matrices M

�
and K

�
preserve symmetry. When the element matrices are

symmetric, the computational load can be substantially reduced. In the case of mechanical
second order systems, the algebraic equation can be solved with almost half the original
variables. Moreover, in the case of this spatial matrix di!erential equation, the real
co-ordinates can be transformed into the time-mode modal co-ordinates by solving the
generalized eigenvalue problems. The characteristics of the time-mode modal co-ordinate
have a signi"cant meaning in the analysis. That is, the time mode model reduction can be
implemented so that only a small number of time modes are used to describe the dynamic
motion of the system. The submatrices can be computed by integrating the shape functions
and their "rst time derivatives in combination with the con"guration parameters of the
system as follows:

[M��]��"���
�4�#

3J
�

l�!r���Q �(t)�Q � (t) dt,
[M��]��"���

��Q
�
(t)�Q

�
(t) dt,

[M


]
��
"���

��Q
�
(t)�Q

�
(t) dt,

[K

]
��
"���

EI�
�
(t)�

�
(t) dt,

[F
�
]
�
"

3

l�!r����

u
�
(t)�

�
(t) dt,

[F


]
�
"���

u


(t)�

�
(t) dt,

(24)

and f
�
(x) in equation (23) is the spatial distribution of the external torque actuated on the

central hub, � i (x)"�ix varies linearly in the spatial domain, where �
�
denotes the slew angle

at the ith time step, and "nally, w(x) denotes the time history of elastic deformation of the
appendage.
Note that the notations in equation (24) have similar forms to the conventional

(space-domain) "nite element method. However, the de"nition is actually totally di!erent.
That is, the matrices M��, M�, M

and K


are mass-weighted and sti!ness-weighted
in#uence matrices in the time domain. A combination of the matrices shown in equation (5)
represents how exactly the dynamic behavior of the system is described. They are related
with only the time domain, not the spatial domain, although it has only a small e!ect on the
spatial domain by way of the time-based generalized eigenvalues and eigenvectors. Spatial
domain analysis can be performed by utilizing the fourth order matrix di!erential equation
after transforming it into the state-space form, as shown in the next section.
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3.1.2. Spatial propagation

In this section, the spatial propagation of the matrix wave equation is investigated for the
hybrid co-ordinate systems. Note that the slew mode is not in#uenced by the spatial
propagation. If the #exible appendage is assumed to be a rigid body and only the slew
motion is considered, then the resulting matrix equation would be an algebraic equation so
that the slew response can be obtained simply by an inversion, as described for the case in
section 2. However, when the #exibility is considered, the spatial propagation in the #exible
mode should be built. Special attention should be given in order to obtain the slew motion
from the coupled slew-#exible interaction. In this study, the same "nite element basis
functions are used for both slew and #exible modes, then the submatrices consisting of
M

�
andK

�
become square matrices with the same dimension. In particular,M� is a square

matrix equivalent to M


whileM�� is a scalar multiple ofM


. We further assumed that
the hub control torque is the only external control input applied to the system. Then,
equation (23) can be divided into two matrix equations and the spatial propagation in the
#exible mode is represented in combination with matrices M


, K


and F

�
as follows:

!

J

�
M


w(x)#�4#

J

��K
w(iv) (x)"!F

�
x, (25)

where J"3J
�
/(l� ! r�).

Equation (25) can be written in the "rst order state-space form as

y
(x)"A y(x)#Bx, (26)

where

y"�
w(x)

w
(x)

M
�
(x)

<(x) � , A"

0 I 0 0

0 0
1

EI
I 0

0 0 0 I

J )EI

4�#J
K��


M


0 0 0

, B"

0

0

0

!

� )EI

4�#J
K��


F
�

(27)

and ( )
,d/dx. It should be noted that the elements of y(x) include the physical parameters
of transverse de#ection, transverse angle, mechanical moment, and shear force. Therefore,
they play a crucial role in applying the boundary condition.
The response of the #exible appendage at any location is obtained by solving equation

(26) as follows:

y(x) " e��	 � ��y(r) # �
�

�

e��� � ��B� d�. (28)

The above equation shows that the time history of the #exible motion consists of two
individual contributions: (1) spatially propagated mechanical properties originating from
the root of the appendage, and (2) the e!ect of the hub control torque combined with the
eigenstructure characteristics of the #exible structure system. The motion of the tip of the
#exible appendage can be obtained from:

y(l)"�y(r)#� (29)
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where

�"e��	 � ��,�
�

��
�

��
�

��
�

��
� ,

�"��(l)���B,�B,

�"diag � . . . 
�
(x) . . . �,


�
(x)"e���� � ���

r

�
�

#

1

��
�
�!�

x

�
�

#

1

��
�
� (30)

and �
�
and � are the ith eigenvalue and the modal matrix of the matrix A, respectively, and

the square matrices � 

��
s (i, j"1, 2) are submatrices of �. Applying the boundary

conditions, the unsolved mechanical properties at both ends are obtained as

�
M(r)

<(r) �"!���
��

�2, (31)

�
w(l)

w
(l)�"!�
��

���
��

�2#�1, (32)

where �"[�
�
�
�
]�. Note from equations (31) and (32) that all the state vectors are

represented as a function of F
�
. The slew motion can be obtained from the "rst row of

equation (23) using the transverse de#ection at the tip of the appendage

�"!

�
(J#4�)

M��

F
�
!

4�
l (J#4�)

w( l). (33)

Thus, all the spatial distribution of the mechanical characteristics on the slewing
appendages can be determined by equation (28).

3.2. GALERKIN'S WEAK PRINCIPLE

In this section, Galerkin's weak principle is used to model the hub}appendage system. In
this modelling method, the constructed matrix equation includes the integration of the
transverse de#ection vector, and therefore, a more complicated formulation for spatial
propagation results.

3.2.1. ¹ime discretization

The following equations of motion can be obtained for the coupled slew-#exible motion
[8]:

�wK (x, t)#�x�$ #
��
�x� �EI

��w (x, t)
�x� �"0, (34)

J
�
�G (t)#4 �

	

�

�x[wK (x, t)#x�G (t)] dx"u
�
(t). (35)

Multiplying equation (34) by v(x, t), integrating over "nite time, and integrating by parts
yields

�
��

��

�w(x, t)vR (x, t) dt!�
��

��

�x�Q (t)vR (x, t) dt#�
��

��

EIw����(x, t)vR (x, t) dt"0. (36)
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Using the same shape functions for both w(x, t) and v(x, t), we obtain the following matrix
ordinary di!erential equation:

!M


w(x)!M


�x#K


w(iv)(x)"0. (37)

The matrix equation for the slew mode can be obtained by a similar approach. However,
the equation is of the algebraic type because the slew mode does not have any independent
variables on the spatial domain.

!

J
���
�
M


�!4M

�
	

�

xw(x) dx"F
�
, (38)

where F
�
is rede"ned as

[F
�
]
�
"���

u
�
(t)�

�
(t) dt

and J
���

"J
�
#4� (l�!r�)/3.

3.2.2. Spatial propagation

Using the time domain "nite element method, the equations of motion of the hybrid
co-ordinate systems can be represented as shown in equations (37) and (38). Equation (37)
represents the spatial propagation of the #exible mode. It is quite similar to that of the
#exible beam, which is a fourth order matrix ordinary di!erential equation of spatial
variable. Note that the slewing variable � and the structural deformation vector w(x) are
coupled through equations (37) and (38), from which information on the slewing motion can
be extracted. The control torque included in equation (38) a!ects the #exible mode in
integral form.
The same state space formulation, as shown in equation (26) can be obtained for the
#exible mode with only a small change, i.e.,

A"�
0 I 0 0

0 0
1

EI
I 0

0 0 0 I

EIK��

M


0 0 0� , B"�

0

0

0

EIK��

M


�� . (39)

And, a similar spatial propagation formulation for the #exible mode can be obtained. Now,
let us analyze the slew motion of the hybrid co-ordinate systems starting from equation (38).
To obtain the solution, the integration �	

�
xw(x) dx should "rst be transformed into

a function of �. The following equation can be obtained using equations (28) and (29):

�
	

�

xy(x) dx"�
	

�

e������xy(r) dx#�
	

�

��(x)x���B(�) dx

"��(l)���y(r)#�����B(�),
(40)

where � and � are diagonal matrices whose diagonal terms are represented as follows:

�
��
"e���	����

l

�
�

!

1

��
�
�!�

r

�
�

!

1

��
�
�, (41)
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�
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1

��
�
��. (42)



TABLE 1

Con,guration parameters for the hybrid co-ordinate systems

Parameter Value Units

Radius of hub 0)2000 m
Rotary inertia of hub 1)2732 kg m�
Mass density of appendage 2800 kg/m�
Young's modulus of appendage 7)5842�10�� N/m�
Thickness of appendage 0)0020 m
Width of appendage 0)0635 m
Length of appendage 0)8100 m
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Therefore, �	
�
xw(x) dx can be expressed using the boundary conditions

�
	

�

xw(x) dx"�	
��	



!

��	�


���
��

�
�
	



�K��

M


�, (43)

where
	"�����, 
"��(l )��� (44)

and 	
��	�	

, 

��	�	

, �
��	�	

are submatrices consisting of ij-rows and kl-columns of the matrices
	, 
 and �, respectively, when the individual matrix is divided into 4�4 square
submatrices. Finally, the time response of the slewing mode can be determined from the
following equation:

�"!�
J
���
�
M


#4M


(	

��	


!


��	�

���

��
�

�
	


)K��


M

�
��
F
�

(45)

and the motion of the appendage can be obtained from equations (28) and (45) with
equation (31).

3.3. NUMERICAL EXAMPLE

Numerical analysis was performed to validate the proposed modelling methods. All the
results were compared with those obtained by the conventional spatial domain "nite
element method using numerical integration. The con"guration parameters of the hybrid
co-ordinate systems are listed in Table 1. Figures 6}8 show the comparative results for the
slew angle, tip de#ection of the appendage, and time history of the overall appendage
respectively. The maneuver shown in the "gures is based on torque shaping using the
Fourier series optimization method [27]

u
�
(t) "

�
�
���

a
�
sin

i�t
t
�
/2

with t
�
"3)22 s, and the coe$cients a

�
of the series expansion listed in Table 2. Note that the

rest-to-rest maneuver guarantees zero initial displacement in both slew and #exible modes.
Second order Lagrange polynomials are used for the time basis functions and 83 time "nite
elements are used with the time interval �t"0)06 s. Figure 6 shows the slew angle, which
shows good results for both modelling methods. However, we can see some discrepancy in
the #exible mode between the method based on extendedHamilton's principle and the exact
solution, as shown in Figures 7 and 8. This small mismatch results from the expansion of the
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Figure 6. Slew angle history: * using Galerkin's weak principle; **using extended Hamilton's principle: � time
domain FEM* ; * time domain FEM**; ** numerical simulation.
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Figure 7. Tip displacement history: *using Galerkin's weak principle; **using extended Hamilton's principle:
� time domain FEM* ; * time domain FEM**; ** numerical simulation.

Figure 8. Spatial wave propagation: (a) using extended Hamilton's principle; (b) using Galerkin's weak principle.
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TABLE 2

Optimized input shaping parameters

i 1 2 3 4 5 6 7

a
�

1)1180 !0)0857 0)2714 !0)1437 !0)0731 !0)1680 !0)0006
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equation to the spatial domain by applying the extended Hamilton's principle rather than
the numerical error or the misled spatial propagation. That is, the obtained solution for the
approximate slew motion [equation (18)] satis"es the variational relationship only in the
overall sense. However, the error in the #exible motion is small enough to con"rm the trend
of the #exible motion. The error in slew motion is negligible within the boundary of the
transverse de#ection weighted by the mechanical properties of the hybrid co-ordinate
systems. Using the relationship of equation (23), the upper half of equation (23) can be
expressed as follows:

�"!

�
4�#J

M��

F
�
!

4�
4�#J

w(x)

x
. (46)

The second term of the above equation represents the in#uence of the #exible motion upon
the slew history, while the "rst part is driven by the application of the external torque. At the
root of the appendage, there is no #exural motion, which negates the e!ect of the second
term. At the tip of the appendage, the #exible motion has a maximum e!ect upon the slew
response with a value of (4�/(4�#J)) (w (l)/l). It reaches a maximum at the tip since the
#exible appendage is governed by the lowest structural mode for the slew response excited
by the shaped torque. However, the value is very small compared with the slew response
caused by the external torque (the ratio of the second term to the "rst term is 9)4�10�
).
Therefore, the e!ect of disturbing #exible motion in slew history is negligible and an
accurate result can be obtained.
The modelling method could be used as an approximate solution when an appropriate

control scheme has been developed. Moreover, it has a simple form and enables the
computation of slewmotion using the #exible mode, which gives a direct "rst estimate of the
slewing and #exible motion. On the other hand, the modelling method based on Galerkin's
weak principle can accurately describe the dynamic motion of a system, and can be applied
to "nd accurate dynamic solutions using some complicated mathematical manipulations.

4. CONCLUSIONS

Several modelling methods were studied for the analysis of various dynamic systems
using the time-domain "nite element method. The general second order mechanical systems
are modelled using Galerkin's weak principle and are veri"ed by a simple pendulum
example. The results are compared with those obtained using Hamilton's weak principle
and it is shown that the proposed method exactly describes the dynamics of the open- and
closed-loop systems with state feedback. The problem caused by the approximation of
terminal momentum is also analyzed. Results from the dynamic systems analysis can be
used for the dynamic modelling of more complicated mechanical systems.
Extending the results of non-propagating system modelling methods, various dynamic

analysis methods are also proposed for hybrid co-ordinate systems that have both slew and
#exible motions. The proposed methods are based on the extended Hamilton's principle
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and Galerkin's weak principle, and the resulting equation of motion is spatially propagated
to satisfy the boundary conditions at both ends, completing the dynamic analysis of the
overall time and space solutions. A numerical example is shown to demonstrate the
proposed methods. Modelling based on the extended Hamilton's principle shows some
erroneous results for #exible motion, while the modelling based on Galerkin's weak
principle shows the exact description of both slew and #exible modes. Therefore, it can be
concluded that modelling based on Galerkin's weak principle is more likely to be used for
the accurate analysis of hybrid co-ordinate systems.
Modelling based on the extended Hamilton's principle can also be used to produce a "rst

estimate on what the slew and #exible motions would be expected to be when a new
regulated control method is developed. In view of its relative simplicity in terms of the
derivation of slew motion, the modelling method can be used as an approximate analysis
tool for the slew and vibration analysis of hybrid co-ordinate systems. The modelling
methods proposed in this paper can also be readily applied to trimmed rotational bodies
where the initial momentum is identical to the "nal momentum of the system in a single
period.
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